
1 

The slender elliptic cone as a model for non-linear 
supersonic flow theory 

By M. D. VAN DYKE 
Ames Aeronautical Laboratory, National Advisory Committee for Aeronautics, 

Moffett Field, California 

(Received 12 December 1955) 

SUMMARY 
The second-order slender-body solution is derived for an 

unyawed elliptic cone in supersonic flow. The result is used as 
the basis for a critique of various approximations in compressible 
flow theory : slender-body, linearized, first- and second-order 
thin-wing theories ; edge corrections ; and the method of linearized 
characteristics. 

1. INTRODUCTION 
The circular cone serves as a standard of comparison for supersonic 

flow past bodies of revolution, and the elliptic cone will probably assume 
the same role for non-circular shapes. ‘ Exact ’ numerical solutions for 
elliptic cones comparable with those available for circular cones would 
require elaborate computing programmes that are not yet contemplated. 
However, a number of approximate theories for the elliptic Gone have 
recently been advanced, based upon various linearizing assumptions. It 
can be anticipated that attempts will be made to improve some of these by 
successive approximations, so as to take account of the non-linear nature 
of compressible flow. 

In  this paper a second approximation to the supersonic flow past un- 
yawed elliptic cones is obtained by proceeding from the slender-body 
theory. The first approximation, following Ward’s (1949) definitive 
treatment of supersonic slender-body theory, has been given by Fraenkel 
(1952). The principles of deriving the second approximation by iteration 
have been set forth by Lighthill (1954) and Van Dyke (1956), the present 
treatment of elliptic cones being the first application to non-circular bodies. 
Whereas Adams & Sears’ ‘ not-so-slender-body ’ theory (1953) seeks only 
a closer approach to the solution of the linearized Prandtl-Glauert equation, 
second-order slender-body theory includes also the leading non-linear terms. 

Although the solution given here has intrinsic interest, it is utilized 
primarily as a model for the full inviscid solution, and thus serves as the 
basis for a critique of various approximations commonly employed in 
compressible flow theory. Thus the second-order solution is regarded as 
being exact (since in one respect or another it is indeed more exact than any 
of the approximations to be considered), and the approximation to be tested 
is introduced in addition to the simplifications already made. 

F.M. A 
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2. THE SECOND-ORDER SLENDER-BODY SOLUTION 

2.1. RDumC of the first-order solution 
Consider a uniform supersonic stream of Mach number M flowing along 

the z-axis. Introduce the non-orthogonal elliptic-conical coordinates 
(6 7, s) by setting 

} (1) 
x + i$ = cs cash (t + iq), 

x = s. 

Then an unyawed elliptic cone is described by f = to or (figure 1) 

(2) 
x = cs cash to cos q = US cos q, 
y = cs sinh to sin q = bs sin q, 

ca = a%- ba. 

Y r 

q=o 

Figure 1. Notation for elliptic cone. 

To second order the flow is irrotational, so that the velocity is the gradient 
of a potential a. Introduce a normalized perturbation potential 4 by 
setting 0 = U(x + 4) where U is the free-stream speed. Then the equation 
of motion, including all terms whose effect may be of second order in the 
slender-body approximation, is 

4sm + 4yy = PA2 + 2M2(4. +.# + A + (Y + 1)M4h A, 
+ M2(@ # m  + 24. A/ 4z l /  + 4; +uu), (3) 

where p2= M 2  - 1. The boundary conditions are that the flow be tan- 
gential to the surface and that, to second order, the perturbation potential 
vanish at the Mach cone Y = (x2 +y2)1’2 = pz. 

In R. T. Jones’s slender-wing theory (1946) all terms on the right-hand 
side of (3) are neglected, although for slender bodies with thickness the term 
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j3aq5zz is implicit in the condition far from the body, as shown by Ward (1949). 
Hence in elliptic-conical coordinates the slender-body equation is simply 

C e e  + C7.I =o. (4) 

(5). 
The condition of tangential flow at the surface is found to be 

Ct = a64  1 + A) at 5 = to, 
where ijZi can be neglected in linearized, and hence also slender-body, theory. 
The general solution of these equations, together with its asymptotic be- 
haviour far from the body, is 

(6) 
2r 

# = a b s f + C  - abslog- +C. 
cs 

The constant C, which may depend upon s, is evaluated by considering the 
asymptotic behaviour. Ward’s theory provides a general connection 
between the term proportional to log r and that independent of r ,  which for 
conical bodies is that the perturbation potential should be asymptotically 
proportional to 

Br l+log - 
2s ’ 

Thus the slender-body solution is found to be 

First derivatives in Cartesian and elliptic-conical coordinates are related 
on the surface of the cone bp 

6 cos c j 6 -  a sin7 (6, 
’ O C =  s(a2 sin2T +b2 cos2q) ’ 

The pressure coefficient is given to second order by 

of which only the first two terms are required in linearized theory. Hence 
the slender-body approximation to the pressure coefficient at the surface of 
the elliptic cone is found to be 

c, = - 2 G  - (C: + 4:) + 8”; + M2CZ(Ci + 4;) + IM2(C: + +;I2, (9) 

4 
a2 sin2q + b2 cos2q 

The drag coefficient (referred to base area) is the average with respect to q 
of the pressure coefficient : 

These results were given by Fraenkel (1952) ; equivalent results of greater 
complexity were obtained by Kahane & Solarski (1953). 

A 2  
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2.2. The not-so-slender solution 
Rather 

than attack at once all the terms neglected on the right-hand side of (3), 
consider first only the single linear term j?2q32z. Thus a second approxi- 
mation is sought to the solution of the Prandtl-Glauert equation, which 
may be written for purposes of iteration as 

The slender-body solution is now to be refined by iteration. 

4m + 41111 = P24zz .  (12) 
Evaluation of the right-hand side in terms of the previous first approxi- 

mation yields, in elliptic-conical coordinates, 

(13) 
3 sin227 - sinh22f 
(cash 2t$ - cos 27)2 ' cbpp + q3,, = $P2ab(a2 - b2)s sinh 26 

The usual techniiue of introducing ( f + i q )  and (5-i7) as independent 
variables permits a particular integral Ifi to be found directly by integration : 

-l) . .  
2 cos 27 

$ = +p2ab(a2 - b2)ssinh 2 4  cash 25 - cos 27 

It can be verified from the general theory (Lighthill 1954, Van Dyke 1956) 
that this particular integral behaves asymptotically in the manner appropriate 
to vanishing perturbation potential at the Mach cone. Hence the con- 
dition far from the body is satisfied provided that the complementary 
function required to restore tangential flow at the surface vanishes at infinity, 
except possibly for a multiple of the first approximation (7). 

The linearized tangency condition has already been satisfied in the first 
approximation, so the correction consisting of the particular integral + plus 
the complementary function x must satisfy +p+ xc = 0 at .$=to. Possible 
complementary functions that vanish far from the body are 

and the combination of these with the first-order solution (7) that satisfies 
the tangency condition is 

3 p c 3  1 [ ( 4 4 4 4cosh2f-cos2~ 
X=p2abs (a2+b2) 1+ -log- + -5- - 

(15) 

From (8) and (9) the surface pressure coefficient is found to be 

-2+ 7 4 

7 a2+b2 3 a2+b2 4 
[2 ab 2 ab p(a+b) 

+p2& - -2- + - -log- 

sin2q)'], (16) 
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where v2 = a2 sin% + b2 cos2q. The corresponding drag coefficient is 

C,=ab 

]. (17) + p Z U 2 b 2 [ i  u2+b2 + ( 3  -- a 2 f b 2  
ab 2 ab 

The first terms in these expressions are the previous slender-body results, 
and the second terms the not so-slender-corrections. 

2.3. Second-order solution neglecting triple products 
Consider next the non-linear terms in the equation of motion ( 3 )  that are 

products of perturbation quantities, the triple products in the last group 
being deferred to the next section. Thus the iteration equation is 

4 + +111/ = 2M2(+. + zz + +vz) + (Y + 1)M4h AZ- (18) 

In the full second-order theory (Van Dyke 1952), and hence also its slender- 
body counterpart, a particular integral vanishing at the Mach cone that 
accounts for all terms on the right-hand side except that involving (y + 1) is 
given in terms of the first approximation by 

sinh 2f 
$,=M2&h,=M2a2b2s 

For the remaining term, a particular integral is given, according to the 
general theory (Van Dyke 1956), in terms of the cross-sectional area S(z),  
by the plane wave 

The linear term in the tangency condition (5) has been satisfied in the 
Hence a complementary function x is required such previous solution. 

that (since $2a = 0) 
ab 

u2 sin27 + b2 cos2r] ] at t=to. (211 
4 

P(a + b)  
z,$~~ -I- xC = abs+, = a2b2s 1 - log ~ - [ 
The desired result is a combination of the three constituents of the com- 
plementary function in the previous not-so-slender problem : 

x = a2b2s[ {(2M2- 1) 

cosh 2.$ - cos 27 

2 (cosh - cos 27) - t }]. (22) 
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From (8) and (9) the surface pressure coefficient is found to be 
C,=ab(2A+p)+P2ab[3abh2+ j(a2+b2)h- &(a- b)i+&ab] 

M4 + a2b2[ (7 + 1) - 2M2h + ( M 2 -  2)hp + (&M2 - 1)p2], (23)  
P 

4 ab A = log ___ - 
= a2 sin2rl + 62 c0s2rl * P(a+b) 

where 

The two rather complicated last terms in the not-so-slender result (16) have 
here disappeared, so that this more complete result is actually easier to 
compute. The drag coefficient is 
C, = ab(2A + 1) + ,B2ab{3abA2 + + b2)h - +(a - b)2 + @b) 

+n2b2[ (y+l )  M 4  p - (2+M2)A+( )M2-1)=  a2+b2]. (24)  

2.4. The eflect of triple products 
The triple products appearing as the last terms in (3) are known to give 

contributions of second order for bodies of revolution, although they have 
been neglected in the few existing second-order solutions for thin wings. 
Their effect is found by considering the iteration equation 

d m  + d,, = M2(dE d m  + 2 4 s  4,4w + 4: 4 V V ) .  (25 1 
This is precisely the iteration equation for the second approximation of 
the Janzen-Rayleigh procedure for plane subsonic flow. Moreover, the 
boundary conditions are essentially the same as in that problem, since the 
normal velocity at the surface must vanish in both cases, and it suffices here, 
as in the Janzen-Rayleigh problem, to require the velocity disturbances to 
vanish at infinity except possibly for a multiple of the first approximation. 
Use can therefore be made of existing treatments of the Janzen-Rayleigh 
problem, of which one of the most elegant is Kaplan’s (1942) method of 
residues. That method gives the complementary function as well as the 
particular integral directly in terms of quadratures, which is advantageous 
here because, although the previous complementary functions were readily 
found by trial, that to be obtained next could have been guessed only with 
extraordinary insight. 

Kaplan’s method utilizes the complex variable 2 in the plane in which 
the body appears transformed into a circle. In the present case, the elliptic 
cone is the unit circle in the 2 plane if 

a - b  
Z=aexp(e+iv), 0 2 =  - 

a+b’ 

The first-order slender-body solution (7)  expressed in terms of 2 is (following 
Kaplan’s notation) the’real part of 
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W,(Z) =fi(Z) = - . 

7 

and the complex velocity W, is given by 

(28) 
abs 
2 

Then Kaplan's equation (32), without the last term (which corresponds to 
a uniform flow at infinity), with U =  1, R, = 1, and a factor M 2  supplied, 
gives for the second-order complex velocity 

Wl(2, Z) = 

+L{ 1 2 
1 -a4 Z(1 - a 2 2 2 )  - G 2 }  

2 2  1 l f o 2 2 2  z+o - 
( 2 2  - a 2 ) (  1 - a222) - 0 (1 - a 2 2 2 ) 2  l o g 2 z  - '+,I. (29) 

2 z  1 z2+02 

+ (p-a?27((z2-a2) + ( 2 2 -  0 )  2 2 log-- 2-0 
Now if the second-order increment in 4 is the real part of fl(Z, ?), then 
?fl/a2= W, and afi/aZ= Fl. Hence integration gives 

Z+a log- 4 /3(a+b)(Z2-02) } + - -  1 Z 
x B?[-{l+log 1 -a4 4 2  a 1 - 0 2 2 2  2-0 

- -  ~~4 i f o 2  2 2  + --log*]. 2 (30) 
0 2  l o g i 3  ( 2 2 - a a " ) ( l - a 2 2 2 )  2 2 - 0 2  Z+a 

T h e  constant of integration has been chosen so that this behaves far from 
the body like the first-order solution (27). The last term inside the bracket 
is the particular integral, and the remainder is the complementary function, 
which is very complicated when written in terms of real variables. Some 
computation yields the following increment in surface pressure due to triple 
products which is to be added to (23): 

2 

a2 - b2 a2b2(a2 - b2)  sin227 sin27 + +(T ) 2 v 6  

a d v q  b da- co~h-~?)] ,  (31) cos-1- - 
b V a V 

where again va = a2 sin% + b2 cos2v. The integrals involved in calculating 
the drag aro treated by contour integration of (Z2 - a2)-l log (1 + uZ)/( 1 - aZ) 
around the unit circle, together with integration by parts. Thus the incre- 
ment in drag due to triple products, which is to be added to (24), is found to be 

4 + -- 3 ab log;]. (32) 
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2.5. Reliability and accuracy of the solution 
Setting 6 equal to a yields the second-order slender-body solution for a 

circular cone, which agrees with Broderick's result (1949). 
As a check, an independent second-order solution (based upon the 

Prandtl-Glauert equation without the slender body-approximation) has 
been carried out for a slightly eccentric elliptic cone by perturbing the 
solution (Van Dyke 1952) for a circular cone. Three terms were retained 
in an expansion in powers of the eccentricity, and the resulting surface 
pressure and drag, when expanded into slender-body form, agree completely 
with the expansion of the above solution in powers of the eccentricity. This 
check, which is so elaborate as to be almost conclusive, was applied also to 
the not-so-slender solution. As an additional check, the pressure has been 
studied in the vicinity of the leading edge as the elliptic cone collapses to a 
flat wing. In  this limit the leading edge approaches a thin highly yawed 
parabolic cylinder, and the above solution is found to reproduce the second- 
order Janzen-Rayleigh solution (Imai 1952) for a parabola in the subsonic 
flow corresponding to the component of free-stream velocity normal to the 
edge. 

Despite occasional statements to the contrary, slender-body theory is 
generally somewhat less accurate than linearized theory (of which it is a 
further simplification), particularly at high supersonic speeds, and the 
inferiority is compounded in higher approximations (Van Dyke 1952). 
However, at ' ordinary' supersonic Mach numbers, of which the arche- 
type is M = 1/2, the first two approximations are known to approach rapidly 
the exact solution for reasonably slender cones (Broderick 1949), and com- 
parable accuracy is to be expected for elliptic cones subtending similar solid 
angles. 

Recently, Rogers & Berry (1956) have measured surface pressures at a 
Mach number of 1.41 over two flat elliptic cones having a = tan 30" = 0.577 
and b=0-05 and 0.10. Figures 2 and 3 show their measurements at zero 
angle of attack, which agree well with the present theory. Pressures are 
plotted against 7 = co~-~(x/as) in order to expand the narrow region of high 
pressure near the leading edge. Also shown for the thinner wing in figure 2 
is the result of neglecting triple products, which is the second-order theory 
used by Rogers & Berry. Inclusion of triple products is seen to yield 
significant improvement in a small region behind the leading edge. The 
maximum increment in pressure coefficient due to triple products is 0.036, 
whereas that due to double products is -0.058. For the thicker wing the 
corresponding maximum values are actually smaller, being 0.027 and 
-0.032, but the maximum net effect of both kinds of non-linear terms is 
somewhat greater than that for the thinner wing. 

These two wings are equivalent in cross-sectional area to circular cones 
having semi-vertex angles of 9.6" and 13.5") for which second-order slender- 
body theory predicts pressure coefficients only a few per cent too high 
(Broderick 1949). However, it might be feared that, with /3a=0-577, the 
planform is so wide that the error in the slender-body expansion would be 
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much greater. At least in the limit of vanishing thickness it can be shown 
that this fear is unwarranted. The surface pressure almost everywhere is 
given exactly in the limit by Squire’s (1947) linearized solution, and second- 
order slender-body theory is 5.7% low. At the leading edge the 
pressure rises to a maximum whose exact value in the limit of zero thickness 
corresponds to loss of the normal component of free-stream velocity, and 
second-order slender-body theory is there only 1-8$6 low. (The 
.corresponding defects in first-order slender-body theory are 1 8.Sy0 and 
15.2~0.) Thus the good agreement between theory and experiment 
shown in figures 2 and 3 might reasonably have been expected. 

. U 0 

- - - _ _ _  
- B 8 0 

- - -  - - _ _ _ _ _ _ _  - - _  - Slender-body theory 

0.5 

0.4 

0.3 

c, 
0.2 

0.1 

o upper surfoce 

x lower surfoce 

slender-body theory 

2nd-order slender-body theory 
without tr iple products 

” - - n - - - - - - - - - -”- - -r- - - -  - - - - -  
Slender- body theory 

0 ‘  I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 

9, degrees 

Figure 2. Theoretical and experimental pressures over 10% thick elliptic cone. 

0.5 

0.4 

0.3 

0 . 2  

0. I 

0 1  I I I I I I I I 
0 I0 20 30 40 50 60 70 80 9 0 ’  

q ,  degrees 

Figure 3. Theoretical and experimental pressures over 20% thick elliptic cone. 
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3. A CRITICAL DISCUSSION OF OTHER APPROXIMATIONS 

3.1. Slender-body and linearized theory 
The above results are now to be used as a model of the full solution, so 

that other approximations will be considered as additional to those already 
made. The second-order slender-body solution will therefore be referred 
to as the ‘ exact ’ solution. On this basis, the not-so-slender approximation 
is the ‘ linearized ’ approximation. 

In this model, as in the full theory, expansion of the linearized solution 
in powers (and logarithms) of the body thickness yields the slender-body 
solution as the leading terms. Slender-body, linearized, and exact theory 
have frequently been compared for circular cones (e.g., Broderick 1949). 
€onsider, therefore, the other extreme of flat cones, as exemplified by the 
wing of figure 3.  For convenience, all comparisons are made at M =  4 2 .  
The surface pressures predicted by slender-body, ‘ linearized ’ , and ‘ exact ’ 
theory are compared in the left half of figure 4. Within this model, linearized 
theory is seen to be definitely superior to slender-body theory. (It becomes 
even more accurate if one uses the linearized velocity components in the 
full isentropic pressure-velocity relation.) 

3.2. First-order thin-wing theory 
Thin-wing theory is a simplification of linearized theory in which the 

condition of tangential flow is imposed not at the, surface but at (say) the 
plane y = 0. Again, in the second and higher approximations the tangency 
condition is transferred to that plane by Taylor series expansion. It is well 
known that, as a consequence of this planar approximation, the solution is 
not uniformly valid, in particular along the edges of the wing, where singu- 
larities arise that are intensified in higher approximations. 

The thin-wing solution for an unyawed elliptic cone lying inside the 
Mach cone in supersonic flow was given hy Squire (1947), who found the 
surface pressure to be constant. The value involves complete elliptic 
integrals, but two terms of their series expansions yield the model required 
here : 

The same result is, of course, obtained by expanding formally the not-so- 
slender solution (16) for small thickness b and retaining only linear terms. 
This two-term approximation is within three per cent of Squire’s result 
for semi-apex angles as great as half the Mach angle, whereas the first term 
alone (the thin-wing limit of slender-body theory) gives that accuracy only 
out to one-fifth of the Mach angle. Comparison with the ‘ exact ’ pressure 
distribution is shown on the right half of figure 4. 

Integration of this pressure over the surface would give a drag coefficient 
equal to the right-hand side of (33). However, R. T. Jones has pointed out 
(1950) that this procedure misses a term associated with the singularity at 
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the edge. 
elliptic cone, and its representation in the present model, are 

His full expression for the additional leading-edge drag of a flat 

ab - ab + 4 ~ ~ 3 6 .  (34) %.E. - d( 1 - pa2) 
- 

1, degrees 
Figure 4. Effect of further approximations upon second-order slender-body solution 

for elliptic cone of figure 3. 

Adding this to (33) gives 

C,=ab 2log- - 1  +P2a3b -log- - - . ( ' p4a ) (i p4a i) (35) 

This agrees with thexesult of expanding the ' exact ' drag (24 + 32) for small 
b. However, expanding the ' linearized ' drag (17) gives - 1 instead of - Q 
in the last term. This discrepancy indicates that linearized theory (even 
with tangency imposed at the actual surface) fails to predict the leading-edge 
drag correctly. Non-linear terms are required, which are implicit in Jones's 
expression (34), although he derived it by an ingenious use of linearized 
theory. 

3.3. Second-order thin-wing theory 

and retention of squares of b yields the ' second-order thin-wing ' result 
Formal expansion of the ' exact ' pressure (23 + 3 1) for small thickness 

+ b2[ 4 - 2 + 3P2a2( log,@ 4 - 1)' 
sin T 

4 2 +2-2log- -1og- 
1 + M2a2( - sin2q Pa pa sin 7 

Fenain & Germain (unpublished) have recently calculated the full second- 
order thin wing-solution for the elliptic cone. When reduced to the present 
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approximation, their expression for pressure agrees with (36) except for the 
terms M2a2b2[ (sin q)-2 - log (2//3a sin q)] arising from the triple products, 
which they do not consider. 

The contribution of the triple products is of the same order as the other 
second-order terms, and, as pointed out above, the numerical values are of 
the same magnitude. Hence it appears that triple products must be 
included in any complete second-order thin-wing solution for a wing having 
round subsonic edges. 

Several of the second-order terms in (36) are infinite at the leading edge 
(7 = 0), so that the pressure distribution has the form shown on the right in 
figure 4. The singularity is non-integrable, and must therefore be elimi- 
nated before the pressure can be integrated to find the drag. Corrections 
of this sort are discussed below. 

Moore (1950) has given the full second-order thin-wing solution for a non- 
lifting cone of diamond section lying inside the Mach cone. For narrow 
planforms and very small thickness he finds large second-order effects over the 
entire wing surface. Lighthill has suggested (1954) that this may indicate 
complete breakdown of the planar approximation for narrow wings having 
stagnation edges. However, the round edges of the present example are a 
more severe test of the planar approximation, and the moderate magnitude of 
second-order effects shown in figure 4 (except for the inevitable leading-edge 
singularity) suggests rather that Moore’s computations are in error. This 
conclusion is confirmed by Fenain & Germain’s recent recalculation (1955) 
of Moore’s problem, which has uncovered an error in his analysis. 

The ‘ first-order ’ pressure coefficient (33) has the form bP1F,,(/3a, /3b,q} 
consistent with the generalized Prandtl-Glauert rule, and the ‘ second- 
order ’ increment in (36) has the form b21F, + M2jF2F2 + (y  + l)M4/3-4F3] 
found by Fenain & Germain( 1955)in their treatment pf the flat diamond cone, 

3.4. Edge corrections 
Recently the author has proposed rules for rendering thin-wing theory 

uniformly valid at subsonic edges (Van Dyke 1954). The rules for round- 
nosed airfoils are based, to second order, upon consideration of subsonic 
flow past a parabola having the same radius as the edge, and consist essen- 
tially in multiplying the thin-wing solution by the ratio of the exact velocity 
on the parabola to its thin-wing expansion. It was suggested that for swept 
edges the rules are to be applied to the normal component of velocity. 

In  the present model, the ‘ exact ’ solution for a parabola in subsonic 
flow consists of the first two terms of the Janzen-Kayleigh approximation 
(Imai 1952). Applying the resulting correction to the ‘ first-order thin- 
wing ’ solution (33) yields the uniformly valid first approximation 

1 4 1--7 tan-ld-7 +- z?;2[1 - F l o g =  + 
1/T 

where 2 1TCOST 
T =  - 

h2 a-2 k cosq 
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Here 'Cp '  is the formal thin-wing result (33); and the upper and lower 
signs apply to the edges where 7=0 and z- respectively. This approxi- 
mation can scarcely be distinguished from the ' exact ' solution to the scale 
of figure 4 ; the comparison is therefore shown in the following table : 

7, degrees 0 5 10 
' Exact ' C,, (23+31) 0.404 0-380 0.317 
Uniform 1st approx. (37) 0.403 0-370 0-305 

20 90 
0.220 0.145 
0.212 0.132 

The  refinement of including effects of both edges, not made here, would 
improve the agreement, giving, for example, 0.138 instead of 0.132 at 7 = 90". 

An unexpected complication arises when the corresponding correction 
is undertaken for the ' second-order thin-wing ' solution (36). Although 
the algebraic singularity is removed, the logarithmic singularity persists in 
the component of velocity tangential to the leading edge, and hence also in 
the pressure. The result is therefore not uniformly valid. This means 
that application of the two-dimensional correction to the normal component 
of velocity at a swept edge, which was thought (Van Dyke 1954) to be 
evidently valid, is incorrect for round edges in the second approximation 
except for incompressible flow. A re-examination of this problem is 
necessary. 

3.5. Linear perturbation of $ow past circular cone 

Ferri and his colleagues have made considerable use of the ' linearized 
characteristics method ', which consists in linearizing in the departure from 
some known basic flow other than a uniform stream. Thus non-circular 
cones are treated by linear perturbation of the known solution for circular 
cones. Although this approximation implies that the cross-section deviates 
only slightly from a circle, Ferri (1951) has reported good agreement with 
experiment for an elliptic cone of 3 : 1 axis ratio. 

The present model has been treated by following Ferri's procedure of 
expanding the velocity components in Fourier series in the polar angle 8, 
linearizing consistently with respect to deviation of the cross-section from 
circular, but then calculating pressure from the full relation, which is (9) 
here. The left half of figure 5 compares the resulting pressures with the 
' exact ' solution for an elliptic cone of 3 : 1 axis ratio and area equivalent to 
a 10" circular cone, at M =  1/2. The rather large discrepancy can be under- 
stood by considering the corresponding expansions in the still simpler case 
of slender-body theory. Since tan7 = (a/b)tan 0, the slender-body pressure 
{ 10) can be shown to have the Fourier expansion in 0 
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Termination of this series at coslOB introduces a considerable error, as 
shown on the right half of figure 5. An additional error of roughly the 
same magnitude is seen to arise from linearization in the departure from the 

0.2 

% 

0.1 

0 

‘Exact‘ “2nd-order slender-body) \ 
. . - - - _ _ _ _ _  
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_ . . . . . -  
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Figure 5. Accuracy of method of linear perturbation of flow past circular cone. 

solution for a circular cone (which in this case affects only the surface boun- 
dary condition, since thz equation of motion is already linear). The latter 
error might be reduced by retaining non-linear terms in the boundary con- 
dition, as has been suggested (Ferri, Ness & Kaplita 1953). However, the 
remaining error inherent in curtailing the Fourier series is so great that if 
only terms up to cos 108 are to be retained, it would seem that the method 
must be restricted to more nearly circular bodies. 

This work was carried out at Cambridge University while the author 
held a Fulbright research grant and a John Simon Guggenheim Memorial 
Fellowship. He is indebted to E. W. E. Rogers for helpful discussion and 
for making his and Berry’s experiments available. 
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